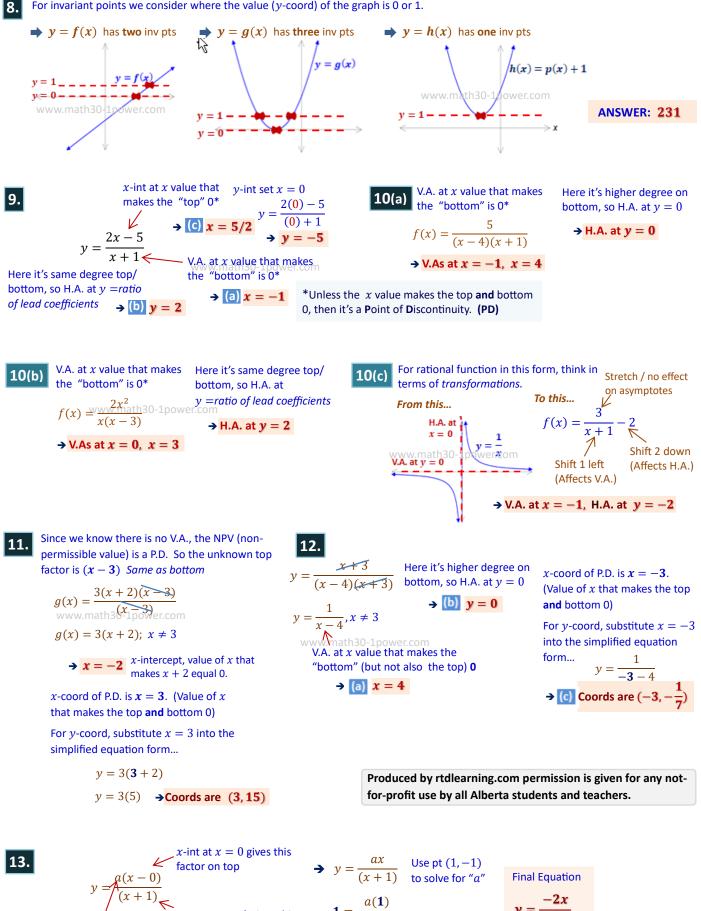

SOLUTIONS Radical / Rational Functions Practice Exam



CODE: 3

Produced by rtdlearning.com permission is given for any notfor-profit use by all Alberta students and teachers.

For invariant points we consider where the value (y-coord) of the graph is 0 or 1.

Vert. stretch, use any point on the graph to solve for this.

V.A. at x = -1 gives this factor on bottom

 $-1 = \frac{a(1)}{(1+1)}$ $(-1)(2) = a(1) \Rightarrow a = -2$

14. Ver, stretch, use any
point on the graph to
subset of this,
$$y = \frac{a(x-1)}{(x+4)(x-1)}$$
, Use pt (-3, 2) to solve for "a"
 $2 = \frac{a(x-1)}{(-3+4)(-3-1)}$,
 $2(1)(-4) = (-4)a$
 $a = -8/-4 \Rightarrow a = 2$
15. Factor bottom to see NPVs /
whether they are VA.s or P.D.s.
 $y = \frac{a(x-b)}{(2x+1)(x-3)}$
 $y = \frac{a(x-b)(x-3)}{(2x+1)(x-3)}$
 x . Therefore the didn't cancel of that does the state stop 0. (And that doesn't cancel with bottom -so used simplified form) $x = b$
 $y = \frac{a(x-b)(x-3)}{(2x+1)(x-3)}$
Answer: D
15. Factor bottom to see NPVs /
whether they are VA.s or P.D.s.
 $y = \frac{a(x-b)(x-3)}{(2x+1)(x-3)}$
 $y = \frac{a(x-b)(x-3)}{(2x+1)(x-3)}$
Answer: D
16. The remaining factor on the bottom is $x = 3$. The remaining factor on the that cancel diverse that $x = 4$
Use the pt (5,4) to solve for "a"
 $4 = \frac{a(5-3)(5-4)}{(5-4)(5-3)}$
 $4 = \frac{a(2(-1)(x-3)}{(5-4)(5-3)}$
 $4 = \frac{a(2(-1)(x-3)}{(5-4)(x-1)}$
und expanding the bottom of the top is:
 $y = \frac{a(x-1)(x-3)}{(x-4)(x-1)}$
und expanding the bottom of pt bottom factor of the top is the x - c. And since there is to x - c. we would get 1. (y-coord of PD) with the x - 1 box - c. we would get 1. (y-coord of PD) with the x - 1 box - c. we would get 1. (y-coord of PD) with the x - 1 box - c. we would get 1. (y-coord of PD) with the x - 1 box - c. we would get 1. (y-coord of PD) with the x - 1 box - c. we would get 1. (y-coord of PD) with the x - 1 box - c. we would get 1. (y-coord of PD) with the x - 1 box - c. we would get 1. (y-coord of PD) with the x - 1 b

the top is
$$x - 3$$
, when $x = 3$, given top is **0**
 $(3)^2 - 5(3) + b = 0$
 $9 - 15 + b = 0$
b = 6

ANSWER: 36

would get **1**. (y-coord of PD)

$$(3) - c = 1$$

c = **2** So, top is (x - 2)(x - 3)Expands to $x^2 - 5x + 6$

Produced by rtdlearning.com permission is given for any notfor-profit use by all Alberta students and teachers.

 $y = \frac{2(x-1)(x-3)}{x^2 - 5x + 4}$

a=2 b=3 c=4

ANSWER: 234